If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 368x + -4.9x2 = 1456 Solving 368x + -4.9x2 = 1456 Solving for variable 'x'. Reorder the terms: -1456 + 368x + -4.9x2 = 1456 + -1456 Combine like terms: 1456 + -1456 = 0 -1456 + 368x + -4.9x2 = 0 Begin completing the square. Divide all terms by -4.9 the coefficient of the squared term: Divide each side by '-4.9'. 297.1428571 + -75.10204082x + x2 = 0 Move the constant term to the right: Add '-297.1428571' to each side of the equation. 297.1428571 + -75.10204082x + -297.1428571 + x2 = 0 + -297.1428571 Reorder the terms: 297.1428571 + -297.1428571 + -75.10204082x + x2 = 0 + -297.1428571 Combine like terms: 297.1428571 + -297.1428571 = 0.0000000 0.0000000 + -75.10204082x + x2 = 0 + -297.1428571 -75.10204082x + x2 = 0 + -297.1428571 Combine like terms: 0 + -297.1428571 = -297.1428571 -75.10204082x + x2 = -297.1428571 The x term is -75.10204082x. Take half its coefficient (-37.55102041). Square it (1410.079134) and add it to both sides. Add '1410.079134' to each side of the equation. -75.10204082x + 1410.079134 + x2 = -297.1428571 + 1410.079134 Reorder the terms: 1410.079134 + -75.10204082x + x2 = -297.1428571 + 1410.079134 Combine like terms: -297.1428571 + 1410.079134 = 1112.9362769 1410.079134 + -75.10204082x + x2 = 1112.9362769 Factor a perfect square on the left side: (x + -37.55102041)(x + -37.55102041) = 1112.9362769 Calculate the square root of the right side: 33.360699586 Break this problem into two subproblems by setting (x + -37.55102041) equal to 33.360699586 and -33.360699586.Subproblem 1
x + -37.55102041 = 33.360699586 Simplifying x + -37.55102041 = 33.360699586 Reorder the terms: -37.55102041 + x = 33.360699586 Solving -37.55102041 + x = 33.360699586 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '37.55102041' to each side of the equation. -37.55102041 + 37.55102041 + x = 33.360699586 + 37.55102041 Combine like terms: -37.55102041 + 37.55102041 = 0.00000000 0.00000000 + x = 33.360699586 + 37.55102041 x = 33.360699586 + 37.55102041 Combine like terms: 33.360699586 + 37.55102041 = 70.911719996 x = 70.911719996 Simplifying x = 70.911719996Subproblem 2
x + -37.55102041 = -33.360699586 Simplifying x + -37.55102041 = -33.360699586 Reorder the terms: -37.55102041 + x = -33.360699586 Solving -37.55102041 + x = -33.360699586 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '37.55102041' to each side of the equation. -37.55102041 + 37.55102041 + x = -33.360699586 + 37.55102041 Combine like terms: -37.55102041 + 37.55102041 = 0.00000000 0.00000000 + x = -33.360699586 + 37.55102041 x = -33.360699586 + 37.55102041 Combine like terms: -33.360699586 + 37.55102041 = 4.190320824 x = 4.190320824 Simplifying x = 4.190320824Solution
The solution to the problem is based on the solutions from the subproblems. x = {70.911719996, 4.190320824}
| 5p=3c+6 | | y-13=-36 | | 9d+10=7 | | X^2+7x+16=4 | | 7-8z=0 | | 300-30x=-150 | | 300-30x=120 | | 3t-2=0 | | 3x^2+7=0 | | -3x+19=19 | | 8x^2+16=0 | | -5x-30=0 | | (17b-8)-4(4b+4)=-7 | | 9-4x=0 | | 7x-(6x+4)=1 | | 1.20k+2.50=27.70 | | (2x+3)(x-4)+(2x+3)(x-6)=0 | | (2u+5)(3-u)=0 | | b^2+5b-4b=-6 | | 4x^2-1x-2=0 | | -100+18x=44 | | -6y+1=-7y+4 | | 4p+9=16+3p | | 4y+15=15 | | 8-101=5-11 | | 3r+1=3r-1 | | 13x+8=6x+22 | | -8+5y=-23 | | -1=2u+7 | | 6=z+15 | | 103-5x=31x+15 | | -n+9-2n-1=-13 |